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A brief review



Statistical Significance vs Practical Significance
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Scientists make a distinction between two types of “significance”:

Statistical significance: Achieving a p-value below a critical alpha level. This 
tells us that the effect that we detected would be 
relatively rare if the null hypothesis is true.

Practical significance: Achieving an effect size that is in line with our 
theory. This could be the size directly predicted by 
our theory, or it could a size that has meaningful 
consequences for our decisions about what to do if 
our theory is correct.

As scientists, we want both. We want to demonstrate that our effect is rare if 
the null hypothesis is true, and we want to demonstrate that the effect size is 
in line with our theory (that it is practically significant). We have learned a lot 
about statistical significance so far. Today we will see how to make the idea of 
effect size mathematically rigorous… and how to quantify our ability to detect 
effects of certain sizes through a measure called statistical power.



Standardized effect size is called Cohen’s d
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Jacob Cohen is another famous statistician, this time 
from the second half of the 20th century. He got his 
PhD at NYU and worked there his entire career!

1923-1998

Cohen’s d is a population parameter. It describes the 
size of the difference between two population means 
in terms of the standard deviation of the populations. 
It typically assumes that the two populations have 
the same standard deviation:

µ1 - µ2

σ
d =

It is a rare case of a 
population parameter 
that uses the Latin 
alphabet (not Greek).

x ̄- x ̄
sp

g =

In practice, you may not know the population 
parameters to put into the equation. In that case, 
you can estimate it from your sample statistics, using 
the square root of the pooled variance. Our textbook 
recommends calling this g, but sometimes people still 
call it d or estimated d.



5

H0 is… True False
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If your test statistic falls on the left 
of the alpha criterion, you’ll fail to 
reject H0, which is a correct 
decision.

If your test statistic falls on the 
right of the alpha criterion, you’ll 
reject H0, which is a type I error 
(false positive).

ɑ
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H0 is… True False
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If your test statistic falls on the left 
of the alpha criterion, you’ll fail to 
reject H0, which is a type II error 
(false negative).

If your test statistic falls on the 
right of the alpha criterion, you’ll 
reject H0, which is a correct 
decision.
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β ɑ

raw effect size (µ1 - µ2)

H0 is… True False

Rejected
Type I error 

(false positive) 
probability = ɑ

correct decision 
(true positive) 

probability = 1-β

Not Rejected
correct decision 
(true negative) 

probability = 1-ɑ

Type II error 
(false negative) 
probability = β

Remember that we never know whether H0 is true or false. So we have to 
imagine both possibilities. We will make a decision. That decision will be one 
of the four outcomes:
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H0 is… True False

Rejected
Type I error 

(false positive) 
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correct decision 
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correct decision 
(true negative) 
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Type II error 
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In precise NHT terms, statistical power is the probability of rejecting the null 
hypothesis when the null hypothesis is false. It is when you make a correct 
decision, but could have made a Type II error.
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H0 is… True False

Rejected
Type I error 

(false positive) 
probability = ɑ

correct decision 
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probability = 1-β
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correct decision 
(true negative) 

probability = 1-ɑ

Type II error 
(false negative) 
probability = β

The rule of thumb (so, a suggestion) from Cohen is that we should have 
statistical power of .8, that means an 80% chance of detecting the effect. He 
chose this because he said that Type I errors (ɑ =.05) are 4 times worse than 
Type II error, so β should equal .2, which yields power (1-β) of .8.
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Which properties matter?
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The relationships here are complex. But we can identify 4 properties that 
dictate the relationship

The choice of alpha (ɑ). 
This will move the ratio of 
Type I and Type II errors.

1. 

The raw effect size (µ1 - 
µ2). This will move the two 
distributions away from each 
other.

2. 

β ɑ

(µ1 - µ2)

The standard deviation (variability) in the distributions. This will create 
less (or more) overlap between the two distributions.

3. 

The sample size (n). This will also change the width of 
the distributions. This is because they are sampling 
distributions of the mean, so their standard deviation is 
the standard error. As the sample size increases, the 
standard error decreases!

4. 

n
sx ̄=

s
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An interactive demonstration
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Here is an interactive demonstration of this same plot, so we can see the 
consequences of the four properties that dictate the error rates.

You should take time to really play with this to build an intuition about how 
these values are related.

https://rpsychologist.com/d3/nhst/

β ɑ

raw effect size (µ1 - µ2)

https://rpsychologist.com/d3/nhst/


What can we change in practice?
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There really is only one of these that we can change in practice:

The choice of alpha (ɑ). This will move 
the ratio of Type I and Type II errors.

1. 

The raw effect size (µ1 - µ2). This will 
move the two distributions away from 
each other.

2. 

The standard deviation in the 
distributions. This will create less (or 
more) overlap between the two 
distributions.

3. 

The sample size (n). This will also 
change the width of the distributions.

4. 

This is set by the field! We 
can’t change it in practice.

This is an inherent property 
of the phenomenon you are 
studying. The universe sets 
this!

This is an inherent property 
of your measurement. The 
universe sets this!

You choose this!



Calculating the sample size that you need for 
good statistical power (typically .8)
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Power is a complex function
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As we have seen, statistical power is a function that takes 4 arguments:

The choice of alpha (ɑ).1. 

The raw effect size (µ1 - 
µ2).

2. 

β ɑ

(µ1 - µ2)

The standard deviation.3. 

The sample size (n).4. 

Therefore we need a complex function to compute it. R gives us those 
functions. For t-tests, that function is power.t.test(). If you look at the help file 
for this function, you will see this. Let’s unpack it! 

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05, 
             power = NULL, 
             type = c("two.sample", "one.sample", "paired"), 
             alternative = c("two.sided", "one.sided"), 
             strict = FALSE, tol = .Machine$double.eps^0.25)



The logic of the function
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The way the power.t.test() function works is that it has 5 arguments: the 4 
that determine power and an argument for power itself. You fill in 4 of them, 
and leave one of those 5 empty (NULL), and it calculates the one that you left 
null. It is really very flexible that way!

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05, 
             power = NULL, 
             type = c("two.sample", "one.sample", "paired"), 
             alternative = c("two.sided", "one.sided"), 
             strict = FALSE, tol = .Machine$double.eps^0.25)

n is the sample size. This is what we usually want to calculate, so we usually 
leave it null.

delta is the difference between means.

sd is the standard deviation. It has a default value of 1 (we will see soon that 
this is because it assumes you want to enter Cohen’s d into delta!).

sig.level is the alpha criterion. You will keep this at 0.05, which is the default.

power is the power level. You should set it 0.8, but you can choose others.



The logic of the function
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The only other thing to remember is that there are different kinds of t-tests. 
So you have to tell this function what kind of t-test you want to run.

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05, 
             power = NULL, 
             type = c("two.sample", "one.sample", "paired"), 
             alternative = c("two.sided", "one.sided"), 
             strict = FALSE, tol = .Machine$double.eps^0.25)

The type argument tells it if you are running a two-sample test (independent 
samples), a one-sample test, or a paired test (we haven’t seen that one yet!).

The alternative argument tells R if you are running a two-tailed (“two.sided”) 
or one-tailed (“one.sided”) test.



Let’s try it
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Let’s say we are working with our height data set. We want to test for a 
difference between our sample means of 5cm, a standard deviation of 10cm, 
and we want power of .8 with an alpha of .05. We want to do this with two 
samples (an independent samples t-test) and we have a one-tailed hypothesis. 
How many observations/participants do we need to collect in our samples?

To calculate this, all we need to do is fill in the correct options for each of the 
arguments, and leave the n argument NULL so that it will calculate n.



Let’s try it again.
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Let’s say we are working with a new data set. We want to test for a difference 
between our means of 30, a standard deviation of 100, and we want power of 
.8 with an alpha of .05. We want to do this with one sample, and we have a 
one-tailed hypothesis. How many observations/participants do we need to 
collect in our sample?

To calculate this, all we need to do is fill in the correct options for each of the 
arguments, and leave the n argument NULL so that it will calculate n.



What if we only know Cohen’s d?

19

The power.t.test() function asks for the raw difference between means in the 
delta argument and standard deviation in the sd argument. But what if you 
don’t know the raw difference between means or the standard deviation, but 
instead know Cohen’s d?

Don’t worry. You can still use the power.t.test() function. All you need to do is 
remember that Cohen’s d is the difference between means divided by the 
standard deviation. So we have all the information we need. We just need to 
figure out how to enter it into the function.

µ1 - µ2

σ
d =

Cohen’s d is usually given as a single number, like 0.5. 
But we can view this as fraction set over 1, like this.

0.5

1

d = 0.5 =
And now we can set this equal to the typical equation 
to see both a difference between conditions and an sd:

µ1 - µ2

σ
d = =

µ1 - µ2 = 0.5

σ = 1
so:

So we put 0.5 into delta, and 1 into 
sd. Since 1 is the default for sd, 
this also means that you simply put 
Cohen’s d into delta!



Let’s try it one with Cohen’s d.
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Let’s say we want to test for an effect with a Cohen’s d of 0.5, and we want 
power of .8 with an alpha of .05. We want to do this with two samples 
(independent samples t-test), and we have a one-tailed hypothesis. How many 
observations/participants do we need to collect in our sample?

Notice that we put Cohen’s d into delta directly, and we set the sd to 1. Very 
easy!



Let’s try it one with Cohen’s d.
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Let’s say we want to test for an effect with a Cohen’s d of 0.5, and we want 
power of .8 with an alpha of .05. We want to do this with two samples 
(independent samples t-test), and we have a one-tailed hypothesis. How many 
observations/participants do we need to collect in our sample?

We can also leave the sd argument out entirely because its default value is 1. 
So when we are working with Cohen’s d, we can just enter that in delta, and 
move on!



But where do you get the effect size from?



It is about your theory
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As we discussed last time, effect sizes come from your theory. It is up to you, 
as a scientist, to use your scientific knowledge to say what the expected effect 
size is that is practically significant for your theory.

If you can use your theory to 
determine the Cohen’s d for your 
effect, you can use a plot like the 
one in your book to simply look up 
the power that you would obtain at 
different sample sizes.

Let’s take a moment to read this 
plot. It shows how power changes as 
a function of sample size for several 
different effect sizes.

Cohen suggested rules of thumb (which are not rules!) for determining if an 
effect size is small or large: 0.2 is small, 0.5 is medium, and 0.8 is large.



You can also estimate it from previous work
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If previous research exists on your topic, you can use the formulas in the book 
to calculate an estimated effect size, called g in our book, from the numbers 
that people report in their articles.

We’ve already seen one way to 
calculate g. You can use the sample 
means and standard deviations that 
are reported in a paper, like this:

µ1 - µ2

σ
d =

ȳ - x ̄
sp

g =

Cohen’s d Estimate

Another option is to use a t-statistic 
that is reported in a paper. Here is 
the formula for this:

2
g =

n
t

2
d =

n
𝛿

You do not need to memorize these. The basic formula will probably stick in 
your mind because it is very similar to the formula for d. But the estimate 
using a t-statistic is rarely used. You can just look it up if you need it. (And, if 
you are curious about where it comes from, you can see the derivation in the 
book — it comes from the formula for t.)



Less common uses for the functions that 
calculate power



You can use it to calculate any of the 5 values
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The power.t.test() function is very flexible. It can calculate any of the 5 
arguments in the function. You just need to fill in 4 of them, and leave 1 null:

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05, 
             power = NULL, 
             type = c("two.sample", "one.sample", "paired"), 
             alternative = c("two.sided", "one.sided"), 
             strict = FALSE, tol = .Machine$double.eps^0.25)

So what else could you do?

You can look at a study that has already been run, and determine how 
much power it had to detect an effect of that size. You fill in the n, delta, 
sd, and sig.level, and leave out the power.

1. 

You can look at a study that has already been run, and determine what the 
smallest effect size is that it could have detected with good power. You fill 
in the n, sd, sig.level, and power, and leave out the delta.

2. 



What is going on with 𝛿 in the book chapter? 



This is called the non-centrality parameter
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The non-centrality parameter is a way to describe the distribution of the 
alternative hypothesis. It is the distance between the central tendency of the 
null hypothesis distribution and the central tendency of the alternative 
hypothesis distribution. The term non-central means not centered on zero!
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the non-centrality parameter
𝛿



Using the non-centrality parameter is simpler
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One way to think of delta is as the 
t-value that you would expect if 
the alternative hypothesis is true. 
It is the mean t-statistic of the 
alternative hypothesis distribution, 
so it is the most common value. 
This is because the null distribution 
is centered on 0, so the distance 
between them becomes the value.

n
=

2
d𝛿

The function for computing power is complicated. It has 4 arguments. It is 
difficult to put 4 arguments in a table. So, if you want to create a table of 
power, you need to reduce the number of arguments. The non-centrality 
parameter helps us collapse three of these arguments together: the effect size, 
the standard deviation, and the size of the sample. You can see this in the 
formula - it contains d (effect size and sd) and n:

The formula derives from the formula for a t-
test. You can see this in the book if you like.
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𝛿
0 𝛿



Though interesting, I don’t think you need it

30

The non-centrality parameter is an interesting concept in statistics. And it is 
certainly nice to reduce the power function to a table.

But, as a practical matter, you are very unlikely to use the non-centrality 
parameter for anything in your actual statistical analyses other than 
calculating power from a table. So, unlike other concepts that we teach you, 
this one seems limited in practical use for us. And the R function power.t.test() 
is much more flexible than the tables in the book. So I don’t want you to 
memorize delta. I won’t ask you to calculate anything with delta. I want you to 
learn how to use the power.t.test() function (which, confusingly, calls the 
effect size “delta”, because “delta” in math just means “difference”). This 
function will help you more in your work.

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05, 
             power = NULL, 
             type = c("two.sample", "one.sample", "paired"), 
             alternative = c("two.sided", "one.sided"), 
             strict = FALSE, tol = .Machine$double.eps^0.25)


